
Managed Transactional Consistency for Web Caching

Ittay Eyal Ken Birman Robbert van Renesse

Cornell University

Abstract—In-memory read-only caches are widely used in
cloud infrastructure to reduce access latency and to reduce
load on backend databases. Operators view coherent caches
as impractical at genuinely large scale and many client-facing
caches are updated in an asynchronous manner with best-effort
pipelines. Existing solutions that support cache consistency are
inapplicable to this scenario since they require a round trip to
the database on every cache transaction.

Existing incoherent cache technologies are oblivious to trans-
actional data access, even if the backend database supports
transactions. We propose T-Cache, a transaction-aware cache
for read-only transactions. T-Cache improves cache consistency
despite asynchronous and unreliable communication between the
cache and the database. We define cache-serializability, a variant
of serializability that is suitable for incoherent caches, and prove
that with unbounded resources T-Cache implements it. With
limited resources, T-Cache allows the system manager to choose
a trade-off between performance and consistency.

Our evaluation shows that T-Cache detects many inconsis-
tencies with only nominal overhead. We use synthetic workloads
to demonstrate the efficacy of T-Cache when data accesses are
clustered and its adaptive reaction to workload changes. With
workloads based on the real-world topologies, T-Cache detects
43−70% of the inconsistencies and increases the rate of consistent
transactions by 33− 58%.

I. INTRODUCTION

Internet services like online retailers and social networks
store important data sets in large distributed databases. Until
recently, technical challenges have forced such large-system
operators to forgo transactional consistency, providing per-
object consistency instead, often with some form of eventual
consistency. However, recent backend systems [1], [2], [3], [4]
support transactions with guarantees such as snapshot isolation
and even full transactional atomicity.

Our work begins with the observation that, at present,
it can be difficult for client-tier applications to leverage the
transactions that the databases provide: their reads are satisfied
primarily from incoherent cache. The benefits of caching are
twofold. First, it reduces database load, thereby enabling higher
throughput. Second, the caches are typically placed close to the
clients, permitting low latency.

The problem centers on the asynchronous style of com-
munication used between the database and the geo-distributed
caches. A cache should not access the database on every
transaction. Any approach requiring a high rate of round-trips
to an authoritative backend database would cause unacceptable
latency. A cache must respond instantly, and asynchronous
updates rule out cache coherency schemes that would require
the backend database to promptly invalidate or update cached

This work is supported, in part, by a grant from the DARPA MRC program.

objects, or even to track the locations at which cached objects
reside. We define a variant of serializability called cache-
serializability that is suitable for incoherent caches.

A wide range of web applications, from social networks
to online retailers, settle for caches that are oblivious to
transactions. Despite the fact that an inconsistent read access
can deter a client and reduce their income, they cannot afford
consistent cache techniques that require backend accesses on
every transaction. We present T-Cache, a novel caching scheme
that improves consistency at the cache level with a nominal
storage and communication tradeoff. T-Cache significantly
improves consistency for workloads where data accesses are
clustered, which is common in today’s large-scale systems.
This is achieved while retaining the global scalability afforded
by executing read-only transactions on the edge, directly from
the cache. We do this by storing dependency information with
the cached objects, allowing the cache (or the application)
to identify possible inconsistencies without contacting the
database. The user can improve the level of consistency by
adjusting the size of this dependency data: more dependency
data leads to increased consistency.

To demonstrate the efficacy of the proposed scheme, we
created a prototype implementation and exposed it to work-
loads based on graphically-structured real-world data, such as
those seen in social-networking situations. The method detects
43− 70% of the inconsistencies and can increase the ratio of
consistent transactions by 33− 58%, both with low overhead.
We construct synthetic workloads and observe how T-Cache
reacts to different clustering levels and how it adapts as clusters
change.

With perfectly clustered workloads, T-Cache implements
full cache-serializability. To explain this perfect behavior we
prove a related claim — we show that with unbounded
resources T-Cache implements cache-serializability.

In summary, the contributions of this work are:

1) Definition of cache-serializability, a variant of serializ-
ability suitable for incoherent caches.

2) The T-Cache architecture, which allows trading off ef-
ficiency and transaction-consistency in large scale cache
deployments.

3) Evaluation of T-Cache with synthetic workloads, demon-
strating its adaptivity and sensitivity to clustering.

4) Evaluation of T-Cache with workloads based on
graphically-structured real-world data demonstrating de-
tection rates of 43− 70% and consistency improvements
of 33− 58% with low overhead.

5) Proof that T-Cache with unbounded resources implements
cache-serializability.

Fig. 1. The common two-tiered structure. Clients perform read-only trans-
actions by accessing caches, which receive their values by reading from the
database (solid lines). Update transactions go directly to the database (double
lines). Subsequent cache invalidations can be delayed or even lost due to race
conditions, leading to a potentially inconsistent view by the cache clients.

II. MOTIVATION

a) Two-tier structure: Large Internet services store vast
amounts of data. Online retailers such as Amazon and eBay
maintain product stocks and information, and social network-
ing sites such as Facebook and Twitter maintain graphical
databases representing user relations and group structures.
For throughput, durability, and availability, such databases are
sharded and replicated.

The vast majority of accesses are read-only (e.g., Facebook
reports a 99.8% read rate [5]). To reduce database load and
to reduce access latency, these companies employ a two-
tier structure, placing layers of cache servers in front of the
database (see Figure 1).

The caches of primary interest to us are typically situated
far from the backend database systems — to reduce latency,
companies place caches close to clients. Timeouts are used to
ensure that stale cached objects will eventually be flushed, but
to achieve a high cache hit ratio, timeout values are generally
large. To obtain reasonable consistency, the database sends an
asynchronous stream of invalidation records or cache updates,
often using protocols optimized for throughput and freshness
and lacking absolute guarantees of order or reliability.

Indeed, it is difficult to make this invalidation mechanism
reliable without hampering database efficiency. The issues are
many. First, the databases are large, residing on many servers,
possibly geo-replicated. Databases use locks prudently in order
to maximize concurrency. To the extent that the database keeps
track of the caches that hold a copy of each object, it may
be possible to send an invalidation, but tracking the state of
caches is complicated and hence if they are used at all, such
systems view invalidations as a kind of hint. They could be
delayed (e.g., due to buffering or retransmissions after message
loss), not sent (e.g., due to an inaccurate list of locations), or
even lost (e.g., due to a system configuration change, buffer
saturation, or because of races between reads, updates, and
invalidations). A missing invalidation obviously leaves the
corresponding cache entry stale. Pitfalls of such invalidation
schemes are described in detail by Nishita et al. [6] and by
Bronson et al. [5].

b) DB Transactional consistency: The complexity of
implementing geo-scale databases with strong guarantees ini-
tially led companies to abandon cross-object consistency alto-
gether and make do with weak guarantees such as per-object
atomicity or eventual consistency. In effect, such systems do
repair any problems that arise, eventually, but the end-user
is sometimes exposed to inconsistency. For some applications
this is acceptable, and the approach has been surprisingly
successful. In today’s cloud, relaxed consistency is something
of a credo.

But forgoing transactional consistency can result in unde-
sired behavior of a service. Consider a buyer at an online site
who looks for a toy train with its matching tracks just as
the vendor is adding them to the database. The client may
see only the train in stock but not the tracks because the
product insertion transaction would often be broken into two
or more atomic but independent subtransactions. In a social
network, an inconsistency with unexpected results can occur
if a user x’s record says it belongs to a certain group, but
that group’s record does not include x. Web albums maintain
picture data and access control lists (ACLs) and it is important
that ACL and album updates are consistent (the classical
example involves removing one’s boss from the album ACL
and then adding unflattering pictures).

While many of these systems make do with weak con-
sistency, their utility is reduced when their clients observe
inconsistencies. There has been a wave of recent innovations
within the backend, offering scalable object stores that can
efficiently support transactions through snapshot isolation and
even full atomicity [1], [2], [3], [4]. Our challenge is to
improve transaction consistency at the cache layer, even when
the cache cannot access the backend on each read.

c) Caches cause problems: As noted, today’s consis-
tency solutions are limited to the database backend. Even when
the database itself is consistent, the vast majority of operations
are read-only transactions issued by edge clients and are at
high risk of observing inconsistent state in the cache. The
outright loss of cache invalidations emerges as an especially
significant problem if transactional consistency is required. An
acceptable solution for a consistent cache must maintain the
performance properties of the existing caching tier. First, we
need to maintain the shielding role of the cache: the cache hit
ratio should be high. Second, a read-only cache access should
complete with a single client-to-cache round-trip on cache hits.
This prohibits coherent cache solutions such as [7].

III. ARCHITECTURE

Since the cache is required to respond immediately to the
client on hits, and the database-cache channel is asynchronous,
we decided to employ a transactional consistency that is
weaker than the full ACID model. In our approach, read-only
transactions and update transactions that access the same cache
are guaranteed an atomic execution, but read-only transactions
that access different caches may observe different orderings
for independent update transactions.

Definition 1 (Cache serializability). For every execution σ,
every partial execution that includes all update transactions
in σ and all read-only transactions that go through a single
cache server, is serializable.

Our solution seeks to approximate cache serializability
with bounded caches and asynchronous communication with
the DB. Our idea starts with an observation: in many sce-
narios, objects form clusters with strong locality properties.
Transactions are likely to access objects that are, in some
sense, close to each other. For retailers this might involve
related products, for social networks the set of friends, for
geographical services physical proximity, and for web albums
the ACL objects and the pictures assigned to them. Moreover,
in some cases applications explicitly cluster their data accesses
to benefit from improved parallelism [8]. The resulting trans-
actions access objects from a single cluster, although there will
also be some frequency of transactions that access unrelated
objects in different clusters.

Our solution requires minor changes to the database object
representation format, imposing a small and constant memory
overhead (that is, independent of the database size and the
transaction rate). This overhead involves tracking and caching
what we refer to as dependency lists. These are bounded-length
lists of object identifiers and the associated version numbers,
each representing some recently updated objects upon which
the cached object depends.

A bounded-sized list can omit dependency information
required to detect inconsistencies, hence it is important to
use a bound large enough to capture most of the relevant
dependencies. At present we lack an automated way to do
this: we require the developer to tune the length so that the
frequency of errors is reduced to an acceptable level, reasoning
about the trade-off (size versus accuracy) in a manner we
discuss further below. Intuitively, dependency lists should be
roughly the same size as the size of the workload’s clusters.

Our extensions offer a transactional interface to the cache
in addition to the standard read/write API. In many cases, our
algorithm detects and fixes inconsistent read-only transactions
at the cache with constant complexity. It does so by either
aborting the transaction (which can then be retried), or in-
validating a cached object which can then force a read from
the database (similar to handling cache misses). When the
dependency lists fail to document a necessary dependency, an
application might be exposed to stale values.

Because we have in mind client-side applications that are
unlikely to validate against the back-end, for many of our
intended uses some level of undetected inconsistency can slip
past. However, because the developer would often be able to
tune the mechanism, during steady-state operation of large
applications, the rate of unnoticed inconsistencies could be
extremely low.

With clustered workloads we will demonstrate that it is
sufficient to store a small set of dependencies to detect most
inconsistencies. We also investigate workloads where the clus-
tered access pattern is less strongly evident; here, our approach
is less effective even with longer dependency list lengths. Thus
our solution is not a panacea, but, for applications matched to
our assumptions, can be highly effective.

A. Database

We assume that the database tags each object with a version
number specific to the transaction that most recently updated

it, and that there is a total ordering on version numbers.
The version of a transaction is chosen to be larger than
the versions of all objects accessed by the transaction. The
database stores for each object o a list of k dependencies
(do1, v

o
1), (d

o
2, v

o
2), . . . (d

o
k, v

o
k). This is a list of identifiers and

versions of other objects that the current version of o depends
on. A read-only transaction that sees the current version of o
must not see object di with version smaller than vi.

When a transaction t with version vt touches objects o1
and o2, it updates both their versions and their dependency
lists. Subsequent accesses to object o1 must see object o2 with
a version not smaller than vt. Moreover, it inherits all of the l
dependencies of o2 (where l is the length of o2’s dependency
list). So the dependency list of o1 becomes

(do11 , vo11), (do12 , vo12), . . . (do1k , vo1k),

(o2, vt), (d
o2
2 , vo22), (do23 , vo23), . . . (do2l , vo2l) .

When a transaction is committed, this update is done for
all objects in the transaction at once. Given a read set readSet,
and a write set writeSet, containing tuples comprised of the
keys accessed, their versions and their dependency lists, the
database aggregates them to a single full dependency list as
follows

full-dep-list←
⋃

(key,ver,depList)∈
readSet∪writeSet

{(key, ver)} ∪ depList .

This list is pruned to match the target size using LRU, and
stored with each write-set object. A list entry can be discarded
if the same entry’s object appears in another entry with a
larger version. Nevertheless, were their lengths not bounded,
dependency lists could quickly grow to include all objects in
the database.

B. Cache

In our scheme, the cache interacts with the database in es-
sentially the same manner as for a consistency-unaware cache,
performing single-entry reads (no locks, no transactions) and
receiving invalidations as the database updates objects. Unlike
consistency-unaware caches, the caches read from the database
not only the object’s value, but also its version and the
dependency list.

To its clients, the extended cache exports a transactional
read-only interface. Client read requests are extended with a
transaction identifier and a last-op flag

read(txnID, key, lastOp) .

The transaction identifier txnID allows the cache to recognize
reads belonging to the same transaction. The cache responds
with either the value of the requested object, or with an abort
if it detects an inconsistency between this read and any of
the previous reads with the same transaction ID. We do not
guarantee that inconsistencies will be detected. The lastOp

allows the cache to garbage-collect its transaction record after
responding to the last read operation of the transaction. The
cache will treat subsequent accesses with the same transaction
ID as new transactions.

To implement this interface, the cache maintains a record of
each transaction with its read values, their versions, and their
dependency lists. On a read of keycurr, the cache first obtains
the requested entry from memory (cache hit), or database
(cache miss). The entry includes the value, version vercurr and
dependency list depListcurr. The cache checks the currently
read object against each of the previously read objects. If a
previously read version v′ is older than expected by the current
read’s dependencies v

∃k, v, v′ : v > v′ ∧ (k, v) ∈ depListcurr∧

(k, v′) ∈ readSet ∪ writeSet , (1)

or the current read vcurr is older than expected by the depen-
dencies of a previous read v

∃v : v > vcurr ∧ (keycurr, v) ∈ readSet ∪ writeSet , (2)

an inconsistency is detected. Otherwise the cache returns the
read value to the client.

Upon detecting an inconsistency, the cache can take one of
three paths:

1) ABORT: abort the current transaction. Compared to the
other approaches, this has the benefit of affecting only
the running transaction and limiting collateral damage.

2) EVICT: abort the current transaction and evict the vi-
olating (too-old) object from the cache. This approach
guesses that future transactions are likely to abort because
of this object.

3) RETRY: check which is the violating object. If it is the
currently accessed object (Equation 2), treat this access
as a miss and respond to it with a value read from the
database. If the violating object was returned to the user as
the result of a read earlier in the transaction (Equeation 1),
evict the stale object and abort the transaction.

C. Consistency

With unbounded resources, T-Cache detects all inconsis-
tencies, as stated in the following theorem.

Theorem 1. T-Cache with unbounded cache size and un-
bounded dependency lists implements cache-serializability.

The proof (deferred to Appendix A) is by constructing a
serialization of the transactions in the database and in one
cache, based on the fact that the transactions in the database
are serializable by definition.

The implications of Theorem 1 will be seen in Sec-
tion V-A3. T-Cache converges to perfect detection when stable
clusters are as large as its dependency lists. In such a scenario,
the dependency lists are large enough to describe all relevant
dependencies.

IV. EXPERIMENTAL SETUP

To evaluate the effectiveness of our scheme, we imple-
mented a prototype. To study the properties of the cache, we
only need a single column (shard) of the system, namely a
single cache backed by a single database server.

Figure 2 illustrates the structure of our experimental setup.
A single database implements a transactional key-value store

Fig. 2. Experimental setup. Update clients access database, which sends
invalidations to the cache. Read-only clients access cache. Consistency monitor
(experiment-only element) receives all transactions and rigorously detects
inconsistencies for statistics.

with two-phase commit. A set of cache clients perform read-
only transactions through a single cache server. The cache
serves the requests from its local storage if possible, or reads
from the database otherwise.

On startup, the cache registers an upcall that can be used
by the database to report invalidations; after each update
transaction the database asynchronously sends invalidations to
the cache for all objects that were modified. A ratio of 20% of
the invalidations, chosen uniformly at random, are dropped by
the experiment; this is extreme and would only be seen in the
real world under conditions of overload or when the system
configuration is changed.

Both the database and the cache report all completed
transactions to a consistency monitor, created in order to
gather statistics for our evaluation. This server collects both
committed and aborted transactions and it maintains the full
dependency graph. It performs full serialization graph test-
ing [9] and calculates the rate of inconsistent transactions that
committed and the rate of consistent transactions that were
unnecessarily aborted.

Our prototype does not address the issue of cache eviction
when running out of memory. In our experiments, all objects
in the workload fit in the cache, and eviction is only done if
there is a direct reason, as explained below. Had we modeled
them, evictions would reduce the cache hit rate, but could not
cause new inconsistencies.

We evaluate the effectiveness of our transactional cache us-
ing various workloads and varying the size of the dependency
lists maintained by the cache and the database. For the cases
considered, short dependency lists suffice (up to 5 versions per
object). An open question for further study is whether there are
workloads that might require limited but larger values. Note
that dependencies arise from the topology of the object graph,
and not from the size of the transactions’ read and write sets.

As a baseline for comparison, we also implemented a
timeout-based approach: it reduces the probability of inconsis-
tency by limiting the life span of cache entries. We compare
this method against our transactional cache by measuring
its effectiveness with a varying time-to-live (TTL) for cache
entries.

In all runs, both read and update transactions access 5

objects per transaction. Update clients access the database at
a rate of 100 transactions per second, and read-only clients
access the cache at a rate of 500 transactions per second.

Our experiment satisfies all read-only transactions from the
cache, while passing all update transactions directly to the
backend database. Each cache server is unaware of the other
servers — it has its own clients and communicates directly
with the backend database. The percentage of read-only trans-
actions can be arbitrarily high or low in this situation: with
more caches, we can push the percentage up. Our simulation
focuses on just a single cache—it would behave the same had
there been many cache servers.

V. EVALUATION

T-Cache can be used with any transactional backend and
any transactional workload. Performance for read-only trans-
actions will be similar to non-transactional cache access:
the underlying database is only accessed on cache misses.
However, inconsistencies may be observed.

First, we will use synthetic workloads so we can evaluate
how much inconsistency can be observed as a function of the
amount of clustering in the workload. This also allows us to
look at the dynamic behavior of the system, when the amount
of clustering and the clustering formation change over time.

Next, we will look at workloads based on Amazon’s prod-
uct co-purchasing and Orkut’s social network to see how much
inconsistency T-Cache can detect as a function of dependency
list length, and compare this with a TTL-based approach. We
are also interested in overhead, particularly the additional load
on the backend database that could form if the the rate of cache
misses increases.

Section III-B presented three strategies for responding to
inconsistency detection. For both the synthetic and realistic
workloads, we compare the efficacy of the three strategies.

A. Synthetic Workloads

Synthetic workloads allow us to understand the efficacy
of T-Cache as a function of clustering. For the experiments
described here, we configured T-Cache with a maximum of 5
elements per dependency list.

Section V-A1 describes synthetic workload generation.
Section V-A2 measures how many inconsistencies we can
detect as a function of clustering and Section V-A3 con-
siders clustering changes over time. Section V-A4 compares
the efficacy of various approaches to dealing with detected
inconsistencies.

1) Synthetic Workload Generation: Our basic synthetic
workload is constructed as follows. We use 2000 objects
numbered 0 through 1999. The objects are divided into clusters
of size 5: 0 − 4, 5 − 9, 10 − 14, . . . , and there are two
types of workloads. In the first, clustering is perfect and each
transaction chooses a single cluster and chooses 5 times with
repetitions within this cluster to establish its access set. In the
second type of workloads access is not fully contained within
each cluster. When a transaction starts, it chooses a cluster
uniformly at random, and then picks 5 objects as follows. Each
object is chosen using a bounded Pareto distribution starting at

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0.01 0.1 1 10

D
e
te

c
te

d

 I
n
c
o
n
s
is

te
n
c
ie

s
 [

%
]

Pareto alpha parameter (log)

Fig. 3. Ratio of inconsistencies as a function of α.

the head of its cluster i (a product of 5). If the pareto variable
plus the offset results in a number outside the range (i.e., larger
than 1999), the count wraps back to 0 through i− 1.

2) Inconsistency Detection as a Function of α: We start
by exploring the importance of the cluster structure by varying
the α parameter of the Pareto distribution. We vary the Pareto
α parameter from 1/32 to 4. In this experiment we are only
interested in detection, so we choose the ABORT strategy.

Figure 3 shows the ratio of inconsistencies detected by
T-Cache compared to the total number of potential inconsisten-
cies. At α = 1/32, the distribution is almost uniform across the
object set, and the inconsistency detection ratio is low — the
dependency lists are too small to hold all relevant information.
At the other extreme, when α = 4, the distribution is so spiked
that almost all accesses of a transaction are within a cluster,
allowing for perfect inconsistency detection. We note that the
rate of detected inconsistencies is so high at this point that
much of the load goes to the backend database and saturates
it, reducing the overall throughput.

3) Convergence: So far we have considered behavior with
static clusters, that is, over the entire run of each experiment
accesses are confined to the same (approximate) clusters.
Arguably, in a real system, clusters change slowly, and so if
T-Cache converges to maintain the correct dependency lists
as clusters change, our setup serves as a valid quasi-static
analysis.

In this section, we investigate the convergence of T-Cache
when clusters change over time. Since the dependency lists
of the objects are updated using LRU, the dependency list of
an object o tends to include those objects that are frequently
accessed together with o. Dependencies in a new cluster
automatically push out dependencies that are now outside the
cluster.

Cluster formation: To observe convergence, we perform
an experiment where accesses suddenly become clustered.
Initially accesses are uniformly at random from the entire set
(i.e., no clustering whatsoever), then at a single moment they
become perfectly clustered into clusters of size 5. Transactions
are aborted on detecting an inconsistency. We use a transaction
rate of approximately 500 per second. The database includes
1000 objects.

Figure 4 shows the percentage of transactions that com-
mit and are consistent (at the bottom), the percentage of
transactions that commit but are inconsistent (in the middle),
and the percentage of transactions that abort (at the top).

 0

 100

 200

 300

 400

 500

 0 20 40 60 80 100 120 140 160

T
ra

n
s
a
c
ti

o
n
 R

a
te

 [
tx

n
/s

e
c
]

Time [sec]

Aborted
Inconsistent

Consistent

Clustered access

Fig. 4. Convergence of T-Cache. Before time t = 58s accesses are uniformly
at random. Afterward, accesses are clustered.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 100 200 300 400 500 600 700 800

In
c
o
n
s
is

te
n
c
y

 R
a
ti

o
 [

%
]

Time [sec]

Fig. 5. Perfectly clustered synthetic workload where the clusters shift by 1
every 3 minutes, marked by vertical lines.

Before t = 58s access is unclustered, and as a result the
dependency lists are useless; only few inconsistencies are
detected, that is, about 26% of the transactions that commit
have witnessed inconsistent data. At t = 58s, accesses become
perfectly clustered. As desired, we see fast improvement
of inconsistency detection. The inconsistency rate drops as
the abort rate rises — this is desired as well. The overall
rate of consistent committed transactions drops because the
probability of conflicts in the clustered scenario is higher.

Drifting Clusters: To illustrate more realistic behavior,
we use clustered accesses that slowly drift. Transactions are
perfectly clustered, as in the previous experiment, but every 3
minutes the cluster structure shifts by 1 (0 − 4, 5 − 9, 10 −
14 → 1 − 4, 5 − 10, 11 − 15, and wrapping back to zero
after 1999). Figure 5 shows the results. After each shift, the
objects’ dependency lists are outdated. This leads to a sudden
increased inconsistency rate that converges back to zero, until
this convergence is interrupted by the next shift.

4) Detection vs. Prevention: Section III-B presented three
possible strategies for the cache to deal with inconsistency
detection: (1) aborting the transaction (ABORT), (2) aborting
and evicting value (EVICT), and (3) read-through when possi-
ble as in cache miss, abort otherwise (RETRY). We will now
compare their efficacies.

We use the approximate clusters workload with 2000
objects, a window size of 5, a Pareto α parameter of 1.0, and
the maximum dependency list size is set to 5.

Figure 6 illustrates the results. For each strategy, the lower
portion of the graph is the ratio of committed transactions that

 0

 20

 40

 60

 80

 100

ABORT EVICT RETRY

R
a
ti

o
 o

f
 T

ra
n
s
a
c
ti

o
n
s
 [

%
]

Behavior on Inconsistency Detection

 Consistent
 Inconsistent
 Aborted

Fig. 6. The efficacy of T-Cache as a function of the strategy taken for
handling detected inconsistencies. ABORT detects 55% of the uncommitable
tranasctions, and EVICT and RETRY reduce the rate of uncommitable
transactions to about 25%.

are consistent, the middle portion is committed transactions
that are inconsistent, and the top portion is aborted transac-
tions.

The abort strategy provides a significant improvement over
a normal, consistency-unaware cache, as the strategy detects
and aborts over 55% of all inconsistent transactions that would
have been committed. But the other strategies make further
improvements. EVICT reduces uncommittable transactions to
28% of its value with ABORT. This indicates that violating
(too-old) cache entries are likely to be repeat offenders: they
are too old for objects that are likely to be accessed together
with them in future transactions, and so it is better to evict
them. RETRY reduces uncommittable transactions further to
about 23% of its value with ABORT.

B. Realistic Workloads

We now evaluate the efficacy of T-Cache with workloads
based on two sampled topologies from the online retailer
Amazon and the social network Orkut. Section V-B1 describes
how we generated these workloads. Section V-B2 measures
the efficacy of T-Cache on these workloads as a function of
maximum dependency list size, and compares this to a strategy
based on TTLs. Section V-B3 compares the efficacy of the
three strategies of dealing with detected inconsistencies.

1) Workload Generation: We generated two workloads
based on real data:

1) Amazon: We started from a snapshot of Amazon’s prod-
uct co-purchasing graph taken early 2003 [10]. Each
product sold by the online retailer is a node and each pair
of products purchased in a single user session is an edge.
The original graph contains more than 260,000 nodes.

2) Orkut: For the second, we used a snapshot of the friend-
ship relations graph in the Orkut social network, taken
late 2006 [11]. In this graph, each user is a node and
each pair of users with a friend relationship is an edge.
The original graph contains more than 3,000,000 nodes.

Because the sampled topologies are large and we only
need to simulate a single “column” of the system for our
purposes — one database server and one cache server — we
down-sample both graphs to 1000 nodes. We use a technique
based on random walks that maintains important properties of
the original graph [12], specifically clustering which is central

to our experiment. We start by choosing a node uniformly and
random and start a random walk from that location. In every
step, with probability 15%, the walk reverts back to the first
node and start again. This is repeated until the target number
of nodes have been visited. Figure 7(a) and (b) show a further
down-sampling to 500 nodes to provide some perception of
the topologies. The graphs are visibly clustered, the Amazon
topology more so than the Orkut one, yet well-connected.

Treating nodes of the graphs as database objects, transac-
tions are likely to access objects that are topologically close
to one another. For the online retailer, it is likely that objects
bought together are also viewed and updated together (e.g.,
viewing and buying a toy train and matching rails). For the
social network, it is likely that data of befriended users are
viewed and updated together (e.g., tagging a person in a
picture, commenting on a post by a friend’s friend, or viewing
one’s neighborhood).

Therefore, we generate a transactional workload that ac-
cesses products that are topologically close. Again, we use
random walks. Each transaction starts by picking a node
uniformly at random and takes 5 steps of a random walk.
The nodes visited by the random walk are the objects the
transaction accesses. Update transactions first read all objects
from the database, and then update all objects at the database.
Read transactions read the objects directly from the cache.

2) Efficacy and Overhead: In this section we evaluate
T-Cache using the workloads described above. We found that
the abort rate is negligible in all runs. Efficacy is therefore
defined to be the ratio of inconsistent transactions out of all
commits.

The overhead of the system is twofold. First, dependency
list maintenance implies storage and bandwidth overhead at
both the database and the cache, as well as compute overhead
for dependency list merging at the server and consistency
checks at the cache. However, the storage required is only
for object IDs and versions, not content, and both updates and
checks are O(1) in the number of objects in the system and
O(k2) in the size of the dependency lists, which is limited to 5
in our experiments.

The second and potentially more significant overhead is
the effect on cache hit ratio due to evictions and hence the
database load. Since cache load is significantly larger than
database load (2 orders of magnitude for Facebook [5]), even a
minor deterioration in hit ratio can yield a prohibitive load on
the backend database. Figure 7c shows the experiment results.
Each data point is the result of a single run.

We vary the dependency list size and for each value
run the experiment for the two workloads and measure the
average values of these metrics. T-Cache is able to reduce
inconsistencies significantly. For the retailer workload, a single
dependency reduces inconsistencies to 56% of their original
value, two dependencies reduce inconsistencies to 11% of
their original value, and three to less than 7%. For the social
network workload, with 3 dependencies fewer than 7% of the
inconsistencies remain.

In both workloads there is no visible effect on cache hit
ratio, and hence no increased access rate at the database. The
reduction in inconsistency ratio is significantly better for the

retailer workload. Its topology has a more clustered structure,
and so the dependency lists hold more relevant information.

Next we compared our technique with a simple approach
in which we limited the life span (Time To Live, TTL) of
cache entries. Here inconsistencies are not detected, but their
probability of being witnessed is reduced by having the cache
evict entries after a certain period even if the database did not
indicate they are invalid.

We run a set of experiments similar to the T-Cache ones,
varying cache entry TTL to evaluate the efficacy of this method
in reducing inconsistencies and the corresponding overhead.
Compared to T-Cache, Limiting TTL has detrimental effects
on cache hit ratio, quickly increasing the database workload.
By increasing database access rate to more than twice its
original load we only observe a reduction of inconsistencies of
about 10%. This is more than twice the rate of inconsistencies
achieved by T-Cache for the retailer workload and only slightly
better than the rate of inconsistencies achieved by T-Cache for
the social network workload; and with twice the additional
load on the database.

3) Detection vs. Prevention: Figure 8 compares the efficacy
of the ABORT, EVICT and RETRY policies with the Amazon
and Orkut workloads. In these experiments we use dependency
lists of length 3. Just as with the synthetic workload, evicting
conflicting transactions is an effective way of invalidating stale
objects that might cause problems for future transactions.

The effects are more pronounced for the well-clustered
Amazon workload. With the Amazon workload, ABORT is
able to detect 70% of the inconsistent transactions, whereas
with the less-clustered Orkut workload it only detects 43%.
In both cases EVICT reduces uncommittable transactions
considerably, relative to their value with ABORT — 20% with
the Amazon workload and 36% with Orkut. In the Amazon
workload, RETRY further reduces this value to 11% of its
value with ABORT.

VI. RELATED WORK

a) Scalable Consistent Databases: Recent years have
seen a surge of progress in the development of scalable object
stores that support transactions. Some systems such as [13],
[14], [15], [16] export novel consistency definitions that allow
for effective optimizations. Several recent systems implement
full fledged atomicity while preserving the system’s scalability
with a wide variety of workloads. Google’s Spanner utilizes
accurate clock synchronization. Tango [2] by Balakrishnan et
al. is constructed on top of the scalable Corfu [17] log. Eyal et
al. [3] utilize a large set of independent logs. Escriva et al. [4]
use DHT-based locking. Zhang et al. [18] use lock chains and
assume transactions are known in advance. These methods
all scale well and in many cases allow databases to accept
loads similar to those handled by non-transactional databases.
Nevertheless, they are not expected to disrupt the prevailing
two-tier structure; caches remain invaluable.

Note that we are addressing the problem of read-only
incoherent caches that respond to queries without access to the
backend database. Previous work on coherent caches, e.g. [19],
[20], [21], supports transactions using locks or communication
with the database on each transaction. These techniques are not
applicable in our scenario.

(a) Product Affinity (Amazon) (b) Social Network (Orkut)

 10

 15

 20

 25

 30

 35

 40

 0 1 2 3 4 5

In
c
o
n
s
is

te
n
c
y

 R
a
ti

o
 [

%
]

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5

H
it

 R
a
ti

o

 50

 100

 150

 200

 250

 0 1 2 3 4 5

D
B

 A
c
c
e
s
s
 R

a
te

 n
o
rm

e
d
 [

%
/s

e
c
]

Dependency List Size

Product Affinity
Social Network

(c) Transactional Cache

 5
 10
 15
 20
 25
 30
 35
 40

 30 50 100
 200

 400
 800

 1600
 3200

 6400

In
c
o
n
s
is

te
n
c
y

 R
a
ti

o
 [

%
]

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 30 50 100
 200

 400
 800

 1600
 3200

 6400

H
it

 R
a
ti

o

 50

 100

 150

 200

 250

 30 50 100
 200

 400
 800

 1600
 3200

 6400

D
B

 A
c
c
e
s
s
 R

a
te

 n
o
rm

e
d
 [

%
/s

e
c
]

Cache Entry TTL [sec] (log, reverse)

Product Affinity
Social Network

(d) Limited Cache Entry TTL

Fig. 7. Experiments with workloads based on a web retailer product affinity topology and a social network topology illustrated in (a) and (b). Transactional
cache (c) compared against the alternative of reducing cache entry time-to-live (d). Data points are medians and error bars bound the 10 and 90 percentiles.

 0

 20

 40

 60

 80

 100

ABO
RT

EVICT

RETRY

ABO
RT

EVICT

RETRY

R
a
ti

o
 o

f
T
ra

n
s
a
c
ti

o
n
s
 [

%
]

 Consistent
 Inconsistent
 Aborted

OrkutAmazon

Fig. 8. The efficacy of T-Cache as a function of the inconsistency handling
strategy for realistic workloads.

b) Consistent Caching: Much work has been done on
creating consistent caches for web servers [22], [23], [24], [25],
[26], distributed file systems [27], [28], Key-Value Stores [29],
[5], [6] and higher level objects [30], [31]. Such systems
consider only one object at a time, and only individual read
and write operations, as they do not support a transactional
interface. There are few if any multi-object or multi-operation
consistency considerations. These systems generally try to
avoid staleness through techniques such as Time-To-Live
(TTL), invalidation broadcasts, and leases. Our work considers
multi-object transactional consistency of cache access.

c) Transactional Caching: Early work on scal-
able database caching mostly ignored transactional consis-
tency [32]. Since then, work has been done on creating
consistent caches for databases. TxCache [7] extends a cen-
tralized database with support for caches that provide snapshot
isolation semantics, albeit the snapshots seen may be stale.
To improve the commit rate for read-only transactions, they
use multiversioning, where the cache holds several versions
of an object and enables the cache to choose a version that
allows a transaction to commit. This technique could also be
used with our solution. Perez-Sorrosal et al. [33], [34] also
support snapshot isolation, but can be used with any backend
database, including ones that are sharded and/or replicated.
JBossCache [35] provides a transactionally consistent cache
for the JBoss middleware. Both JBossCache and [36] support
transactions on cached Enterprise JavaBeans. [37] allows up-
date transactions to read stale data out of caches and provide
bounds on how much staleness is allowed. These techniques
require fast communication between the cache and the database
for good performance. In contrast, in our work caches are
asynchronously updated (or invalidated), which is how caches
currently work in large multi-regional clouds.

VII. FUTURE DIRECTIONS

The dependency list sizes for all objects in T-Cache are
currently all of the same maximum length. This may not
be optimal. For example, if the workload accesses objects
in clusters of different sizes, objects of larger clusters call
for longer dependency lists. Once appropriate real workloads
are available, it may be possible to improve performance
by dynamically changing per-object dependency list sizes,
balancing between objects to maintain the same overall space
overhead. Another option is to explore an approach in which
each type of object would have its own dependency list bound;

this could work well if a system has multiple classes of objects,
all clustered but with different associated clustering properties.

At present, T-Cache is semantics-agnostic and treats all
objects and object relations as equal, using an LRU policy
to trim the list of dependencies. However, there may be
cases in which the application could explicitly inform the
cache of relevant object dependencies, and those could then
be treated as more important and retained, while other less
important ones are managed by some other policy such as
LRU. For example, in a web album the set of pictures and their
ACL is an important dependency whereas occasional tagging
operations that relate pictures to users may be less important.
It may be straightforward to extend the cache API to allow
the application to specify such dependencies and to modify
T-Cache to respect them.

VIII. CONCLUSION

Existing large-scale computing frameworks make heavy
use of edge caches to reduce client latency, but this form of
caching has not been available for transactional applications.
We believe this is one reason that transactions are generally not
considered to be a viable option in extremely large systems.

We defined cache-serializability, a variant of serializability
that is suitable for incoherent caches, which cannot communi-
cate with the backend database on every read access. We then
presented T-Cache, an architecture for controlling transaction
consistency with caches. The system extends the edge cache
by allowing it to offer a transactional interface. We believe
that T-Cache is the first transaction-aware caching architecture
in which caches are updated asynchronously. In particular, a
lookup request only requires a round-trip to the database in
case there is a cache miss — there is no additional traffic and
delays to ensure cache coherence.

T-Cache associates dependency information with cached
database objects, while leaving the interaction between the
backend systems and the cache otherwise unchanged. This
information includes version identifiers and bounded-length
dependency lists. With this modest amount of additional in-
formation, we show that inconsistency can be greatly reduced
or even completely eliminated in some cases.

T-Cache is intended for clustered workloads, and those
arise naturally in social networks, product relationships, mobile
applications with spatial locality, and so on. Our experiments
demonstrate T-Cache to be effective in realistic workloads
based on datasets from Amazon and Orkut. Using dependency
lists of size 3, T-Cache detected 43− 70% of the inconsisten-
cies, and was also able to increase consistent transaction rate
by 33−58% with only nominal overhead on the database. Our
experiments with synthetic workloads showed that T-Cache’s
efficacy depends on the clustering level of the workload.
T-Cache adapts to dynamically changing workloads where
clusters change over time.

Due to resource limitations T-Cache maintains only a
short dependency list, which is naturally imperfect and
does not include all dependencies. We proved that when
resources are unbounded, T-Cache’s algorithm implements
cache-serializability.

REFERENCES

[1] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman,
S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild, W. Hsieh, S. Kan-
thak, E. Kogan, H. Li, A. Lloyd, S. Melnik, D. Mwaura, D. Nagle,
S. Quinlan, R. Rao, L. Rolig, Y. Saito, M. Szymaniak, C. Taylor,
R. Wang, and D. Woodford, “Spanner: Google’s globally distributed
database,” ACM Transactions on Computer Systems (TOCS), vol. 31,
no. 3, p. 8, 2013.

[2] M. Balakrishnan, D. Malkhi, T. Wobber, M. Wu, V. Prabhakaran,
M. Wei, J. D. Davis, S. Rao, T. Zou, and A. Zuck, “Tango: Distributed
data structures over a shared log,” in Proceedings of the 24th ACM

Symposium on Operating Systems Principles. ACM, 2013, pp. 325–
340.

[3] I. Eyal, K. Birman, I. Keidar, and R. van Renesse, “Ordering trans-
actions with prediction in distributed object stores,” in Proc. of the

7th Workshop on Large-Scale Distributed Systems and Middleware

(LADIS’13), 2013.

[4] R. Escriva, B. Wong, and E. G. Sirer, “Warp: Multi-key transactions
for key-value stores,” Dept. of Computer Science, Cornell University,
Tech. Rep., 2013.

[5] N. Bronson, Z. Amsden, G. Cabrera, P. Chakka, P. Dimov, H. Ding,
J. Ferris, A. Giardullo, S. Kulkarni, H. Li, M. Marchukov, D. Petrov,
L. Puzar, Y. J. Song, and V. Venkataramani, “TAO: Facebook’s dis-
tributed data store for the social graph.” in USENIX Annual Technical

Conference, 2013, pp. 49–60.

[6] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C. Li,
R. McElroy, M. Paleczny, D. Peek, P. Saab, D. Stafford, T. Tung,
and V. Venkataramani, “Scaling Memcache at Facebook,” in 10th

USENIX Symposium on Networked Systems Design and Implementation

(NSDI’13). Lombard, IL: USENIX, 2013, pp. 385–398. [On-
line]. Available: https://www.usenix.org/conference/nsdi13/technical-
sessions/presentation/nishtala

[7] D. R. Ports, A. T. Clements, I. Zhang, S. Madden, and B. Liskov,
“Transactional consistency and automatic management in an application
data cache.” in 9th USENIX Symposium on Operating Systems Design

and Implementation (OSDI ’10), vol. 10, 2010, pp. 1–15.

[8] W. Xie, G. Wang, D. Bindel, A. Demers, and J. Gehrke, “Fast iter-
ative graph computation with block updates,” in Proc. of the VLDB

Endowment (PVLDB), vol. 6, Sep. 2013, pp. 2014–2025.

[9] P. A. Bernstein, Concurrency control and recovery in database systems.
New York: Addison-Wesley, 1987, vol. 370.

[10] J. Leskovec, L. A. Adamic, and B. A. Huberman, “The dynamics of
viral marketing,” ACM Transactions on the Web (TWEB), vol. 1, no. 1,
p. 5, 2007.

[11] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and B. Bhat-
tacharjee, “Measurement and analysis of online social networks,” in
Proceedings of the 7th ACM SIGCOMM Conference on Internet Mea-

surement (IMC’07). ACM, 2007, pp. 29–42.

[12] J. Leskovec and C. Faloutsos, “Sampling from large graphs,” in
Proceedings of the 12th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining. ACM, 2006, pp. 631–636.

[13] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen, “Don’t
settle for eventual: Scalable causal consistency for wide-area storage
with COPS,” in Proc. 23rd ACM Symposium on Operating Systems

Principles (SOSP 11), Oct. 2011.

[14] Y. Sovran, R. Power, M. K. Aguilera, and J. Li, “Transactional storage
for geo-replicated systems,” in Proc. 23rd ACM Symposium on Oper-

ating Systems Principles (SOSP 11), Oct. 2011.

[15] C. Li, D. Porto, A. Clement, J. Gehrke, N. Preguica, and R. Rodrigues,
“Making geo-replicated systems fast as possible, consistent when nec-
essary,” in 10th USENIX Symposium on Operating Systems Design and

Implementation (OSDI ’12), 2012.

[16] C. Xie, C. Su, M. Kapritsos, Y. Wang, N. Yaghmazadeh, L. Alvisi,
and P. Mahajan, “Salt: Combining ACID and BASE in a distributed
database,” in 11th USENIX Symposium on Operating Systems Design

and Implementation (OSDI ’14), 2014.

[17] M. Balakrishnan, D. Malkhi, V. Prabhakaran, T. Wobber, M. Wei, and
J. D. Davis, “Corfu: A shared log design for flash clusters.” in 9th

USENIX Symposium on Networked Systems Design and Implementation

(NSDI’12), 2012, pp. 1–14.

[18] Y. Zhang, R. Power, S. Zhou, Y. Sovran, M. K. Aguilera, and J. Li,
“Transaction chains: achieving serializability with low latency in geo-
distributed storage systems,” in Proceedings of the 24th ACM Sympo-

sium on Operating Systems Principles. ACM, 2013, pp. 276–291.

[19] M. J. Franklin, M. J. Carey, and M. Livny, “Transactional client-server
cache consistency: alternatives and performance,” ACM Transactions on

Database Systems (TODS), vol. 22, no. 3, pp. 315–363, 1997.

[20] M. J. Carey, D. J. DeWitt, M. J. Franklin, N. E. Hall, M. L.
McAuliffe, J. F. Naughton, D. T. Schuh, M. H. Solomon, C. K.
Tan, O. G. Tsatalos, S. J. White, and M. J. Zwilling, “Shoring
up persistent applications,” in Proceedings of the 1994 ACM SIGMOD

International Conference on Management of Data, ser. SIGMOD ’94.
New York, NY, USA: ACM, 1994, pp. 383–394. [Online]. Available:
http://doi.acm.org/10.1145/191839.191915

[21] A. Adya, R. Gruber, B. Liskov, and U. Maheshwari, “Efficient optimistic
concurrency control using loosely synchronized clocks,” ACM SIGMOD

Record, vol. 24, no. 2, pp. 23–34, 1995.

[22] J. Challenger, A. Iyengar, and P. Dantzig, “A scalable system for
consistently caching dynamic web data,” in Proc. INFOCOM ’99, Mar.
1999.

[23] H. Yu, L. Breslau, and S. Shenker, “A scalable web cache consistency
architecture,” SIGCOMM Computer Communications Review, vol. 29,
no. 4, pp. 163–174, 1999.

[24] H. Zhu and T. Yang, “Class-based cache management for dynamic web
content,” in Proc. INFOCOM ’01, 2001.

[25] M. Attar and M. Ozsu, “Alternative architectures and protocols for
providing strong consistency in dynamic web applications,” World Wide

Web Journal, vol. 9, no. 3, pp. 215–251, 2006.

[26] Oracle, “Oracle web cache,” http://www.oracle.com/technetwork/-
middleware/webtier/overview.

[27] C. A. Kent, “Cache coherence in distributed systems,” Ph.D. disserta-
tion, Purdue University, Aug. 1986.

[28] A. M. Vahdat, P. C. Eastham, and T. E. Anderson, “Webfs: A global
cache coherent file system,” UC Berkeley, Tech. Rep., Dec. 1996.

[29] Memcached, “Memcached: a distributed memory object caching sys-
tem,” http://memcached.org.

[30] S. D. Gribble, E. A. Brewer, J. M. Hellerstein, and D. Culler, “Scalable,
distributed data structures for internet service construction,” in Proceed-

ings of the 4th Conference on Symposium on Operating System Design

& Implementation (OSDI’00), vol. 4. USENIX Association, 2000.

[31] R. Bakalova, A. Chow, C. Fricano, P. Jain, N. Kodali, D. Poirier,
S. Sankaran, and D. Shupp, “WebSphere dynamic cache: Improving
J2EE application experience,” IBM Systems Journal, vol. 43, no. 2,
2004.

[32] Q. Luo, S. Krishnamurthy, C. Mohan, H. Pirahesh, H. Woo, B. G. Lind-
say, and J. F. Naughton, “Middle-tier database caching for e-business,”
in International Conference on Management of Data (SIGMOD), 2002,
pp. 600–611.

[33] F. Perez-Sorrosal, M. Patino-Martinez, R. Jimenez-Peris, and
B. Kemme, “Consistent and scalable cache replication for multi-tier
J2EE applications,” in Proc. of Middleware’07, 2007.

[34] F. Perez-Sorrosal, M. Patiño-Martinez, R. Jimenez-Peris, and
B. Kemme, “Elastic SI-Cache: consistent and scalable caching in multi-
tier architectures,” The International Journal on Very Large Data Bases

(VLDB Journal), vol. 20, no. 6, pp. 841–865, 2011.

[35] M. Surtani and B. Ban, “JBoss Cache,” http://jbosscache.jboss.com.

[36] A. Leff and J. Rayfield, “Improving application throughput with enter-
prise JavaBeans caching,” in International Conference on Distributed

Computing Systems (ICDCS), 2003.

[37] P. A. Bernstein, A. Fekete, H. Guo, R. Ramakrishnan, and P. Tamma,
“Relaxed-currency serializability for middle-tier caching and replica-
tion,” in International Conference on Management of Data (SIGMOD),
2006, pp. 599–610.

APPENDIX

We now prove Theorem 1.

Theorem 1. T-Cache with unbounded cache size and un-
bounded dependency lists implements cache-serializability.

Since we assume that the transactional DB is serializable,
the operations in an execution of update transactions σupdate

can be serialized as some serial execution π. The next claim
trivially follows from the definition of the database dependency
list specification:

Claim 1. If π is a serialization of the update transactions of an
execution σupdate, then, at every step in π, the version depen-
dencies of every object match those stored in its dependency
list.

To prove Theorem 1, we first describe a routine for placing
a read-only transaction from a cache server in a serialization
of a subset of σ, to form a serialization of both the update
transaction and the read-only transaction.

A. Permutation routine

Let σ be an execution of the T-Cache system, and denote
by σupdate the projection of σ on the set of database update
transactions. Transaction T reads objects o1, o2, . . . , on with
versions v1, v2, . . . , vn, respectively. Take any serialization π
of σupdate (one exists according to Claim 1) and consider the
first time when all the objects the transaction reads are at a
version at least as large as the versions that T reads. At this
time at least one object read by T , the last written according
to π, has the correct version, but others might not. Assume
without loss of generality that the last version written is vn of
object on at step t of π. Denote by t′ the latest time at which a
wrong version (not the one read by T) is written, and assume
WLOG it is version vn−1 + k of object on−1 (rather than the
desired version vn−1) for some k ≥ 1.

We now describe a single step of the routine. Consider
the transactions between t′ and t (inclusive). Divide these
transactions into three sets:

Set 1 Transactions dependent on the transaction at t′ (includ-
ing t′).

Set 2 Transactions on which t is dependent (including t).
Set 3 Transactions that do not belong to either group.

The following Lemma states that there is no dependency
among objects in sets 1 and 2, and hence there is no intersec-
tion between the sets.

Lemma 1. Sets 1 and 2 are independent.

Proof: If they were dependent, then version vn of object
on depends on version vn−1 + k of object on−1, and this
dependency is reflected in their T-Cache dependency lists,
because they are unbounded. However, transaction T has read
version vn−1 of object on−1, which is older than vn−1 + k.
The read of the stale version vn−1 of on−1 would have been
detected by T-Cache and the transaction would have been
aborted. Therefore the assumption is wrong, and the sets are
indeed independent.

Set 3, perhaps an empty set, is unrelated to sets 1 and 2 by
definition. We therefore switch sets 1 and 2, and place set 3
right after them, maintaining a serialization of σupdate.

For example, consider the following serialization: (Xi

denotes a transaction X in set i):

A1 B3 C1 D1 E3 F2 G2

After the permutation, we obtain:

A1 C1 D1 F2 G2 B3 E3

Performing this permutation is one step of the routine.
We repeat this step forming a series of permutations. Each
permutation is a serialization of σupdate, and each permutes a
range of the transactions with respect to the previous step.
In each step the right end of the range is earlier than in the
previous step, as one or more of the objects is closer to the
value read by T . Eventually we therefore reach a permutation
where at the chosen time all read objects are at their correct
versions. We place T there to obtain the desired serialization
of the update transactions and T .

B. T-Cache Consistency

We proceed to prove Theorem 1.

Proof: Let σ be an execution of the T-Cache system, and
denote by σupdate the projection of σ on the set of database
update transactions. Denote by T1, T2, . . . , Tm a set of read-
only transactions performed through a single T-Cache server.

If the read sets of two transactions include the same object
o, we say the one that read a larger version of o depends on the
other. All transactions access the same cache, and the cache
is unbounded. Therefore, values are only replaced by newer
versions, so it is easy to see that there are no cycles such that
two transactions depend on one another. The dependency graph
therefore describes a partial order of the read-only transactions,
and we choose an arbitrary total ordering that respects this
partial order. Assume WLOG the order is T1, T2, . . . , Tm.

We take an initial arbitrary serialization π0 of σ and
permute it according to the route above to place T1, the
first read-only transaction. The result is a permutation π′

1 that
includes T1. Then, we take all transactions that precede T1

in π′

1 although T1 does not depend on them, and place them
after T1. We call this permutation π1.

Next we place T2 by permuting π1. If T2 can be placed
immediately after T1, we place it there to form π2. If T2 is
independent of T1 then all its preceding transactions (according
to the dependency graph) are unrelated to T1 and are therefore
located after it. The permutations required are therefore after
T1’s location. Finally, if T2 depends on T1, all relevant update
transactions are located after T1 in π1, and therefore the
permutations required are all after T1’s location. Since in all
cases the permutations are after T1’s location in π1, they do not
affect the correctness of T1’s placement. We take the resulting
permutation that we call π′

2, and move all transactions that
neither T2 nor T1 depend on to right after T2. The resulting
permutation is π2.

We repeat this process until we place all read-only trans-
actions, forming πm. This is a serialization of the update
transactions in σ and all read-only transactions that accessed
the same cache. We have therefore shown that in any execution
of T-Cache the update transactions can be serialized with read-
only transactions that accessed a single cache, which means
that T-Cache implements cache serializability.

